Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
1.
J Agric Food Chem ; 72(14): 7980-7990, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38562102

RESUMO

Prebiotic oligosaccharides have attracted immense interest in the infant formula (IF) industry due to their unique health benefits for infants. There is a need for the reasonable supplementation of prebiotics in premium IF products. Herein, we characterized the profile of galacto-oligosaccharides (GOS) in human milk (HM) and IF using ultrahigh-performance liquid chromatography-cyclic ion mobility-mass spectrometry (UPLC-cIM-MS) technique. Additionally, we further performed a targeted quantitative analysis of five essential HM oligosaccharides (HMOs) in HM (n = 196), IF (n = 50), and raw milk of IF (n = 10) by the high-sensitivity UPLC-MS/MS method. HM exhibited a more abundant and variable HMO composition (1183.19 to 2892.91 mg/L) than IF (32.91 to 56.31 mg/L), whereas IF contained extra GOS species and non-negligible endogenous 3'-sialyllactose. This also facilitated the discovery of secretor features within the Chinese population. Our study illustrated the real disparity in the prebiotic glycome between HM and IF and provided crucial reference for formula improvement.


Assuntos
Fórmulas Infantis , Leite Humano , Lactente , Humanos , Leite Humano/química , Fórmulas Infantis/química , Prebióticos/análise , 60705 , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Oligossacarídeos/química
2.
PLoS One ; 19(4): e0301381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625903

RESUMO

The current effort to valorize waste byproducts to increase sustainability and reduce agricultural loss has stimulated interest in potential utilization of waste components as health-promoting supplements. Tomato seeds are often discarded in tomato pomace, a byproduct of tomato processing, yet these seeds are known to contain an array of compounds with biological activity and prebiotic potential. Here, extract from tomato seeds (TSE), acquired from pomace, was evaluated for their ability to effect changes on the gut microbiota using an ex vivo strategy. The results found that TSE significantly increased levels of the beneficial taxa Bifidobacteriaceae in a donor-independent manner, from a range of 18.6-24.0% to 27.0-51.6% relative abundance following treatment, yet the specific strain of Bifidobacteriaceae enhanced was inter-individually variable. These structural changes corresponded with a significant increase in total short-chain fatty acids, specifically acetate and propionate, from an average of 13.3 to 22.8 mmol/L and 4.6 to 7.4 mmol/L, respectively. Together, these results demonstrated that TSE has prebiotic potential by shaping the gut microbiota in a donor-independent manner that may be beneficial to human health. These findings provide a novel application for TSE harvested from tomato pomace and demonstrate the potential to further valorize tomato waste products.


Assuntos
Microbioma Gastrointestinal , Solanum lycopersicum , Humanos , Extratos Vegetais/química , Sementes/química , Antioxidantes/análise , Prebióticos/análise
3.
Food Chem ; 448: 138959, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552464

RESUMO

This study aimed to investigate the interaction between L.casei and L.bulgaricus with Polygonatum sibiricum saponins (PSS) and to explore the co-microencapsulation to reduce their loss rate during storage and consumption. 1% PSS was added to the culture broth, and it was found that the growth and metabolism of the strains were accelerated, especially in the compound probiotic group, indicating that PSS has potential for prebiotics. LC-MS observed significant differences in the composition and content of saponins in PSS. The metabolomics results suggest that the addition of PSS resulted in significant changes in the metabolites of probiotics. In addition, it was found that the combination of probiotics and PSS may have stronger hypoglycemic ability (ɑ-glucosidase, HepG2). Finally, a co-microencapsulated delivery system was constructed using zein and isomaltooligosaccharide. This system can achieve more excellent resistance of probiotics and PSS in gastrointestinal fluids, effectively transporting both to the small intestine.


Assuntos
Composição de Medicamentos , Polygonatum , Probióticos , Saponinas , Saponinas/química , Saponinas/metabolismo , Saponinas/farmacologia , Humanos , Probióticos/metabolismo , Probióticos/química , Polygonatum/química , Polygonatum/metabolismo , Prebióticos/análise , Lactobacillus/metabolismo , Lactobacillus/química , Lactobacillus/crescimento & desenvolvimento , Lactobacillales/metabolismo , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/química
4.
Carbohydr Polym ; 332: 121911, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431414

RESUMO

Milk oligosaccharides (MOs), complex carbohydrates prevalent in human breast milk, play a vital role in infant nutrition. Serving as prebiotics, they inhibit pathogen adherence, modulate the immune system, and support newborn brain development. Notably, MOs demonstrate significant variations in concentration and composition, both across different species and within the same species. These characteristics of MOs lead to several compelling questions: (i) What distinct beneficial functions do MOs offer and how do the functions vary along with their structural differences? (ii) In what ways do MOs in human milk differ from those in other mammals, and what factors drive these unique profiles? (iii) What are the emerging applications of MOs, particularly in the context of their incorporation into infant formula? This review delves into the structural characteristics, quantification methods, and species-specific concentration differences of MOs. It highlights the critical role of human MOs in infant growth and their potential applications, providing substantial evidence to enhance infant health and development.


Assuntos
Leite Humano , Leite , Recém-Nascido , Animais , Feminino , Humanos , Leite/química , Leite Humano/química , Oligossacarídeos/química , Fórmulas Infantis/química , Prebióticos/análise , Mamíferos/metabolismo
5.
BMC Microbiol ; 24(1): 83, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468200

RESUMO

BACKGROUND: The interplay between gut microbiota (GM) and the metabolization of dietary components leading to the production of short-chain fatty acids (SCFAs) is affected by a range of factors including colonic pH and carbohydrate source. However, there is still only limited knowledge on how the GM activity and metabolite production in the gastrointestinal tract could be influenced by pH and the pH gradient increases along the colon. RESULTS: Here we investigate the effect of pH gradients corresponding to levels typically found in the colon on GM composition and metabolite production using substrates inulin, lactose, galactooligosaccharides (GOS), and fructooligosaccharide (FOS) in an in vitro colon setup. We investigated 3 different pH regimes (low, 5.2 increasing to 6.4; medium, 5.6 increasing to 6.8 and high, 6.0 increasing to 7.2) for each fecal inoculum and found that colonic pH gradients significantly influenced in vitro simulated GM structure, but the influence of fecal donor and substrate was more pronounced. Low pH regimes strongly influenced GM with the decreased relative abundance of Bacteroides spp. and increased Bifidobacterium spp. Higher in vitro simulated colonic pH promoted the production of SCFAs in a donor- and substrate-dependent manner. The butyrate producer Butyricimonas was enriched at higher pH conditions, where also butyrate production was increased for inulin. The relative abundance of Phascolarctobacterium, Bacteroides, and Rikenellaceae also increased at higher colonic pH, which was accompanied by increased production of propionate with GOS and FOS as substrates. CONCLUSIONS: Together, our results show that colonic substrates such as dietary fibres influence GM composition and metabolite production, not only by being selectively utilized by specific microbes, but also because of their SCFA production, which in turn also influences colonic pH and overall GM composition and activity. Our work provides details about the effect of the gradients of rising pH from the proximal to distal colon on fermenting dietary substrates in vitro and highlights the importance of considering pH in GM research.


Assuntos
Inulina , Prebióticos , Prebióticos/análise , Inulina/metabolismo , Força Próton-Motriz , Fermentação , Ácidos Graxos Voláteis/metabolismo , Butiratos/metabolismo , Fezes/microbiologia , Bacteroidetes
6.
Int J Biol Macromol ; 259(Pt 2): 129274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199546

RESUMO

In this study, the key prebiotic fraction of grapefruit peel sponge layer soluble dietary fiber (GSLSDF) was identified, and its structure characteristics and modulatory effect on intestinal microorganisms were investigated. Firstly, two fractions (GSLSDF-1 and GSLSDF-2) were isolated from GSLSDF, and the GSLSDF-1 showed a better prebiotic activity. Subsequently, GSLSDF-1 was found to have a low molecular weight and crystallinity, a loose and porous microstructure, and a high glucose content. Meanwhile, GSLSDF-1 was a dextran with a main chain linked by ß-1, 4 glycosidic bonds and branched by a ß-1, 6 glycosidic bonds. These structural characteristics were responsible for the favorable prebiotic activity of GSLSDF-1. Finally, the regulation effect of GSLSDF-1 on gut microbiota was analyzed in vitro fecal fermentation. Compared with the blank and GSLSDF groups, GSLSDF-1 could increase the relative abundances of Lactobacillus, Bacteroides, Bifidobacterium and Faecalibacterium coupled with decrease the relative abundances of Clostridium and Clostridioides. Furthermore, GSLSDF-1 promoted the production of short-chain fatty acids (SCFAs) by modulating the SCFAs synthesis pathway of intestinal microorganisms, while the NH3-N synthesis of intestinal microorganisms was inhibited by GSLSDF-1. Above results indicated that GSLSDF-1 was the key prebiotic fraction of GSLSDF, which could effectively optimize the intestinal microorganism composition.


Assuntos
Citrus paradisi , Microbioma Gastrointestinal , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Fermentação , Fibras na Dieta/análise , Prebióticos/análise
7.
Int J Biol Macromol ; 259(Pt 2): 129309, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216021

RESUMO

Arabinoxylans (AXs) are compounds with high nutritional value and applicability, including prebiotics or supplementary ingredients, in food manufacturing industries. Unfortunately, the recovery of AXs may require advanced separation and integrated strategies. Here, an analysis of the emerging techniques to extract AXs from cereals and their by-products is discussed. This review covers distinct methods implemented over the last 2-3 years, identifying that the type of method, extraction source, AX physicochemical properties and pre-treatment conditions are the main factors influencing the recovery yield. Alkaline extraction is among the most used methods nowadays, mostly due to its simplicity and high recovery yield. Concurrently, recovered AXs applied in food applications is timely reviewed, such as potential bread ingredient, prebiotic and as a wall material for probiotic encapsulation, in beer and non-alcoholic beverage manufacturing, complementary ingredient in bakery products and cookies, improvers in Chinese noodles, 3D food printing and designing of nanostructures for delivery platforms.


Assuntos
Fibras na Dieta , Probióticos , Fibras na Dieta/análise , Prebióticos/análise , Xilanos/química
8.
J Agric Food Chem ; 72(7): 3596-3605, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38270580

RESUMO

Knowledge about the prebiotic characteristics of cellulose by in vitro fermentation is not complete due to the neglect of small intestinal fermentation. This study investigated the effects of small intestinal fermentation on the prebiotic characteristics of cellulose in the large intestine and potential mechanisms through an approach of combined in vivo small intestinal fermentation and in vitro fermentation. The structural similarity between cellulose in feces and after processing by the approach of this study confirmed the validity of the approach employed. Results showed that small intestinal fermentation of cellulose increased both acetate and propionate content and enriched Corynebacterium selectively. Compared to in vitro fermentation after in vitro digestion of cellulose, the in vitro fermentation of cellulose after in vivo small intestinal fermentation produced higher contents of acetate and propionate as well as the abundance of probiotics like Ruminococcaceae_UCG-002, Blautia, and Bifidobaterium. The changes in the structural features of cellulose after in vivo small intestinal fermentation were more obvious than those after in vitro digestion, which may account for the greater production of short-chain fatty acids (SCFAs) and the abundance of probiotics. In summary, small intestinal fermentation enhanced the prebiotic characteristics of cellulose in the large intestine by predisrupting its structure.


Assuntos
Celulose , Prebióticos , Celulose/metabolismo , Prebióticos/análise , Propionatos/metabolismo , Fermentação , Intestino Grosso/metabolismo , Ácidos Graxos Voláteis/metabolismo , Acetatos/metabolismo , Fezes/microbiologia , Digestão
9.
J Agric Food Chem ; 72(4): 2250-2262, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235718

RESUMO

This study explores the structural characterization of six noncovalent polyphenol-starch complexes and their prebiotic activities during in vitro digestion and fermentation. Ferulic acid, caffeic acid, gallic acid, isoquercetin, astragalin, and hyperin were complexed with sweet potato starch (SPS). The polyphenols exhibited high binding capacity (>70%) with SPS. A partial release of flavonoids from the complexes was observed via in vitro digestion, while the phenolic acids remained tightly bound. Molecular dynamics (MD) simulation revealed that polyphenols altered the spatial configuration of polysaccharides and intramolecular hydrogen bonds formed. Additionally, polyphenol-SPS complexes exerted inhibitory effects on starch digestion compared to gelatinized SPS, owing to the increase in resistant starch fraction. It revealed that the different complexes stimulated the growth of Lactobacillus rhamnosus and Bifidobacterium bifidum, while inhibiting the growth of Escherichia coli. Moreover, in vitro fermentation experiments revealed that complexes were utilized by the gut microbiota, resulting in the production of short-chain fatty acids and a decrease in pH. In addition, the polyphenol-SPS complexes altered the composition of gut microbiota by promoting the growth of beneficial bacteria and decreasing pathogenic bacteria. Polyphenol-SPS complexes exhibit great potential for use as a prebiotic and exert dual beneficial effects on gut microbiota.


Assuntos
Polifenóis , Amido , Polifenóis/química , Amido/química , Prebióticos/análise , Fermentação , Ácidos Graxos Voláteis/metabolismo , Digestão
10.
Biotechnol Bioeng ; 121(3): 1118-1143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151924

RESUMO

A novel bioreactor simulating human colonic conditions for in vitro cultivation of intestinal microbiota is presented. The PEristaltic mixed Tubular bioReactor (PETR) is modular designed and periodically kneaded to simulate intestinal peristalsis. The reactor is introduced, characterized from a bioprocess engineer's perspective and discussed in its ability to mimic colon conditions. PETR provides physiological temperature and appropriate anaerobic conditions, simulates intestinal peristalsis, and has a mean residence time of 32.8 ± 0.8 h comparable to the adult human colon. The single-tube design enables a time-constant and longitudinally progressive pH gradient from 5.5 to 7.0. Using a dialysis liquid containing high molecular weight polyethylene glycol, the integrated dialysis system efficiently absorbs short chain fatty acids (up to 60%) and water (on average 850 mL d-1 ). Cultivation of a typical gut bacterium (Bifidobacterium animalis) was performed to demonstrate the applicability for controlled microbiota cultivation. PETR is unique in combining simulation of the entire colon, peristaltic mixing, dialytic water and metabolite absorption, and a progressive pH gradient in a single-tube design. PETR is a further step to precise replication of colonic conditions in vitro for reliable and reproducible microbiota research, such as studying the effect of food compounds, prebiotics or probiotics, or the development and treatment of infections with enteric pathogens, but also for further medical applications such as drug delivery studies or to study the effect of drugs on and their degradation by the microbiota.


Assuntos
Colo , Peristaltismo , Adulto , Humanos , Colo/química , Colo/metabolismo , Colo/microbiologia , Prebióticos/análise , Reatores Biológicos , Água/metabolismo
11.
J Agric Food Chem ; 71(48): 19078-19087, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053507

RESUMO

In the present study, the influence of viscosity on the fermentation characteristics of fructooligosaccharides (FOS) by gut microbiota was examined. Different concentrations of methylcellulose (MC) were added to create varying viscosities and the mixture was fermented with FOS by gut microbiota. The results demonstrated that higher viscosity had a significant impact on slowing down the fermentation rate of FOS. Specifically, the addition of 2.5 wt% MC, which had the highest viscosity, resulted in the lowest and slowest production of gas and short-chain fatty acids (SCFAs), indicating that increased viscosity could hinder the breakdown of FOS by gut microbiota. Additionally, the slower fermentation of FOS did not significantly alter the structure of the gut microbiota community compared to that of FOS alone, suggesting that MC could be used in combination with FOS to achieve similar prebiotic effects and promote gut health while exhibiting a slower fermentation rate.


Assuntos
Microbioma Gastrointestinal , Humanos , Viscosidade , Fezes/química , Fibras na Dieta/metabolismo , Prebióticos/análise , Ácidos Graxos Voláteis/metabolismo , Fermentação
12.
Int J Biol Macromol ; 253(Pt 7): 127326, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37820907

RESUMO

Dietary fiber is crucial for human health mainly due to its impact on gut microbiota structure and metabolites. This study aimed to investigate the impact of Dendrobium officinale polysaccharides (DOP) and two common fibers (ß-glucan and inulin) on the gut microbiome structure and metabolic profile in vitro. Fecal samples were obtained from 30 healthy volunteers, which were then individually subjected to fermentation with each type of fiber. The results revealed that all fibers were efficiently degraded by gut microbiota, with DOP exhibiting a slower fermentation rate compared to ß-glucan and inulin. The fermentation of all fibers led to a significant increase in the production of short-chain fatty acids (SCFAs) and a reduction in branched-chain fatty acids (BCFAs), sulfides, phenols, and indole. Moreover, the abundance of unclassified Enterobacteriaceae, which was positively correlated with sulfide, phenols, and indole levels, was significantly reduced by all fibers. Additionally, DOP specifically promoted the growth of Parabacteroides, while ß-glucan and inulin promoted the growth of Bifidobacterium and Faecalibacterium. Taken together, these findings enhance our understanding of the role of DOP, ß-glucan, and inulin in modulating gut microbiota and metabolites, where the fermentation with fecal bacteria from different volunteers could provide valuable insights for personalized therapeutic approaches.


Assuntos
Dendrobium , beta-Glucanas , Humanos , Prebióticos/análise , Inulina/farmacologia , Inulina/metabolismo , Fermentação , beta-Glucanas/farmacologia , beta-Glucanas/metabolismo , Multiômica , Polissacarídeos/farmacologia , Polissacarídeos/análise , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Indóis , Fenóis/análise
13.
Food Chem Toxicol ; 180: 114009, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37652126

RESUMO

Ulcerative colitis (UC) is believed to arise from an imbalance between the intestinal microbiota and mucosal immunity, leading to excessive intestinal inflammation. Modulating the gut microbial community through dietary components presents a valuable strategy in aiding the treatment of UC. In this study, esters formed by binding of well-known prebiotics, fructooligosaccharides (FOS), with short chain fatty acids (SCFAs) via both enzymatic and chemical methods were evaluated for their impact on the gut microbiota of UC patients. An in vitro human colonic fermentation model was employed to monitor changes in total carbohydrates and SCFAs production during the fermentation of these esters by microbiota from patients with active and remission UC. The results showed that pronounced abundance of [Ruminococcus]_gnavus_group, Escherichia_Shigella, Lachnoclostridium, Klebsiella and other potential pathogens were detected in the fecal samples from UC patients, with a milder condition observed during the remission phase. Significant higher levels of corresponding SCFA were observed in the groups with addition of FOS-SCFAs esters during fermentation. Butyrylated fructooligosaccharides (B-FOS) and propionylated fructooligosaccharides (P-FOS) by enzymatic synthesis successfully promoted the proliferation of Bifidobacterium and inhibited Clostridium_sensu_stricto_1 and Klebsiella. Overall, B-FOS and P-FOS exhibit promising potential for restoring intestinal homeostasis and alleviating intestinal inflammation in individuals with UC.


Assuntos
Colite Ulcerativa , Microbiota , Humanos , Colite Ulcerativa/tratamento farmacológico , Prebióticos/análise , Fermentação , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Inflamação
14.
Food Funct ; 14(16): 7718-7726, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37548014

RESUMO

The development of novel prebiotics, which could regulate the intestinal microbiota, may help prevent and treat intestinal diseases. Here, we studied a homogeneous polysaccharide, LPE-2, produced by Lactobacillus pentosus YY-112 during fermentation. Methylation and gas chromatography-mass spectrometry analysis, combined with nuclear magnetic resonance results, suggested that the structural unit of LPE-2 comprises a branched mannan moiety and a linear glucan moiety. In vitro simulated intestinal fermentation showed that LPE-2 reduced harmful intestinal gas production and promoted short-chain fatty acid production (especially propionic acid). Moreover, it reduced the relative abundance of Escherichia-Shigella, increased that of Bifidobacterium and Lactobacillus, and had a stronger regulatory effect on intestinal flora in women than in men. The potential sex-specific prebiotic effects of LPE-2 on human intestinal health, were possibly related to its mannan branch with (1→2) and (1→3) linkages and backbones with flexible α configurations, which are sheared and degraded/utilized easier by Bifidobacterium and Lactobacillus.


Assuntos
Microbioma Gastrointestinal , Lactobacillus pentosus , Masculino , Humanos , Feminino , Mananas/farmacologia , Fezes/microbiologia , Prebióticos/análise , Lactobacillus , Fermentação
15.
An Acad Bras Cienc ; 95(suppl 1): e20220532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556713

RESUMO

This study evaluated the technological viability of yogurt with the addition of green-banana biomass (Musa spp.) considering the resistant starch (BBV) as a potential prebiotic ingredient and texture agent. Four yogurt formulations were prepared: control; 3% BBV; 5% BBV; and 10% BBV. They were subjected to analysis of resistant starch, lactose, fat, total dry extract, defatted dry extract, moisture, ash, proteins, pH and titratable acidity; syneresis analysis, instrumental texture and instrumental color. All four formulations met the requirements of the identity and quality regulation for fermented milks regarding the physicochemical and microbiological parameters. In the instrumental color analysis, in all treatments with added BBV, darkening was observed after 21 days, with a reduction of a* coordinate and an increase of b* coordinate. In the instrumental texture analysis, the yogurt in the Control treatment had the highest firmness (0.430 N) at 21 days among these treatments. Among the treatments with added BBV, the yogurt with 5% added BBV showed the best results for increasing the viability of lactic bacteria. It was found that yogurt with added BBV is a promising alternative in the elaboration of functional dairy products, adding value to the banana production chain by reducing the green fruit waste.


Assuntos
Musa , Prebióticos , Biomassa , Prebióticos/análise , Amido Resistente/análise , Iogurte/análise
16.
Microbiome ; 11(1): 148, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37408039

RESUMO

BACKGROUND: Gut microbiota have a complex role on the survivability, digestive physiology, production, and growth performance in animals. Recent studies have emphasized the effects of prebiotics therapy on the gut disease, but the relationship between elephant gut-related diseases and prebiotics remains elusive. Here, a case study was undertaken to evaluate the mechanism of inulin treatment in colic in Asian elephant (Elephas maximus Linnaeus). METHODS: Fecal samples were collected from a sick elephant and four healthy elephants. Analysis of microbial profile was carried out by 16S rRNA sequencing, and the short chain fatty acids were tested by gas chromatography. The physiological function of "inulin-microbiota" of elephant was verified in mice by fecal microbial transplantation (FMT). The expression of related proteins was determined by Western blotting and qPCR. RESULTS: (1) Eating inulin can cure gut colic of the sick elephant and changed gut microbiota. (2) It was found that "inulin microbiota" from the post-treatment elephants can promote the proliferation of intestinal cells, increase the utilization of short chain fatty acids (SCFAs), maintain intestinal barrier, and reduce the inflammation in mice. (3) The mechanism was inulin-gut microbiota-SCFAs-immune barrier. CONCLUSIONS: Inulin contributed to rehabilitate the gut microbiota and gut immune barrier of the elephant with colic. This provides reasonable verification for using prebiotics to treat the colic in captive elephants. Prebiotics will foresure play an increasingly important role in disease prevention and treatment of captive animals in the future. Video Abstract.


Assuntos
Cólica , Elefantes , Microbioma Gastrointestinal , Animais , Camundongos , Inulina , Elefantes/genética , Prebióticos/análise , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis/análise
17.
Nutrients ; 15(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375663

RESUMO

Lactoferrin (LF) is a glycoprotein found in mammalian milk, and lactoferricin is a peptide derived from LF hydrolysate. Both LF and lactoferricin (LFcin) have diverse functions that could benefit mammals. Bovine LF (BLF) and BLFcin exhibit a wide range of antimicrobial activities, but most probiotic strains are relatively resistant to their antibacterial effects. BLF and BLF hydrolysate can promote the growth of specific probiotics depending on the culture conditions, the dose of BLF or BLF-related peptides, and the probiotic strains used. BLF supplementation has been shown to modulate several central molecular pathways or genes in Lacticaseibacillus rhamnosus GG under cold conditions, which may explain the prebiotic roles of BLF. LF alone or in combination with selected probiotics can help control bacterial infections or metabolic disorders, both in animal studies and in human clinical trials. Various LF-expressing probiotics, including those expressing BLF, human LF, or porcine LF, have been developed to facilitate the combination of LFs with specific probiotics. Supplementation with LF-expressing probiotics has positive effects in animal studies. Interestingly, inactivated LF-expressing probiotics significantly improved diet-induced nonalcoholic fatty liver disease (NAFLD) in a mouse model. This review highlights the accumulated evidence supporting the use of LF in combination with selected LF-resistant probiotics or LF-expressing probiotics in the field.


Assuntos
Prebióticos , Probióticos , Camundongos , Animais , Bovinos , Humanos , Suínos , Prebióticos/análise , Lactoferrina/metabolismo , Antibacterianos/uso terapêutico , Probióticos/farmacologia , Probióticos/uso terapêutico , Leite/química , Mamíferos/metabolismo
18.
Food Chem ; 426: 136554, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321121

RESUMO

Starch-based dietary fibers are at the forefront of functional ingredient research. In this study, a novel water-soluble slow digestion dextrin (SDD) was synthesized by synergy of α-glucosidase and cyclodextrin glucosyltransferase and characterized. Results showed that SDD exhibited high solubility, low viscosity, and resistance to digestive enzymes, and also showed an increased dietary fiber content of 45.7% compared with that of α-glucosidase catalysis alone. Furthermore, SDD was used as the sole carbon source to ferment selected intestinal strains and human fecal microflora in vitro to investigate its prebiotic effects. It was found that SDD could markedly enriched the abundance of Bifidobacterium, Veillonella, Dialister, and Blautia in human gut microflora and yielded higher total organic acid. The combination of α-glucosidase and cyclodextrin glucosyltransferase in this study showed valuable potential for the preparation of a novel slow digestion dextrin with good physicochemical properties and improved prebiotic effects.


Assuntos
Ciclodextrinas , Microbioma Gastrointestinal , Humanos , Prebióticos/análise , Dextrinas/análise , alfa-Glucosidases/análise , Ciclodextrinas/farmacologia , Glucosiltransferases , Fibras na Dieta/análise , Fezes/microbiologia , Digestão , Fermentação
19.
Nutrients ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242222

RESUMO

Human milk represents an optimal source of nutrition during infancy. Milk also serves as a vehicle for the transfer of growth factors, commensal microbes, and prebiotic compounds to the immature gastrointestinal tract. These immunomodulatory and prebiotic functions of milk are increasingly appreciated as critical factors in the development of the infant gut and its associated microbial community. Advances in infant formula composition have sought to recapitulate some of the prebiotic and immunomodulatory functions of milk through human milk oligosaccharide (HMO) fortification, with the aim of promoting healthy development both within the gastrointestinal tract and systemically. Our objective was to investigate the effects of feeding formulas supplemented with the HMO 2'-fucosyllactose (2'-FL) on serum metabolite levels relative to breastfed infants. A prospective, randomized, double-blinded, controlled study of infant formulas (64.3 kcal/dL) fortified with varying levels of 2'-FL and galactooligosaccharides (GOS) was conducted [0.2 g/L 2'-FL + 2.2 g/L GOS; 1.0 g/L 2'-FL + 1.4 g/L GOS]. Healthy singleton infants age 0-5 days and with birth weight > 2490 g were enrolled (n = 201). Mothers chose to either exclusively formula-feed or breastfeed their infant from birth to 4 months of age. Blood samples were drawn from a subset of infants at 6 weeks of age (n = 35-40 per group). Plasma was evaluated by global metabolic profiling and compared to a breastfed reference group (HM) and a control formula (2.4 g/L GOS). Fortification of control infant formula with the HMO 2'-FL resulted in significant increases in serum metabolites derived from microbial activity in the gastrointestinal tract. Most notably, secondary bile acid production was broadly increased in a dose-dependent manner among infants receiving 2'-FL supplemented formula relative to the control formula. 2'-FL supplementation increased secondary bile acid production to levels associated with breastfeeding. Our data indicate that supplementation of infant formula with 2'-FL supports the production of secondary microbial metabolites at levels comparable to breastfed infants. Thus, dietary supplementation of HMO may have broad implications for the function of the gut microbiome in systemic metabolism. This trial was registered at with the U.S. National library of Medicine as NCT01808105.


Assuntos
Microbiota , Leite Humano , Feminino , Humanos , Lactente , Recém-Nascido , Pré-Escolar , Leite Humano/química , Estudos Prospectivos , Suplementos Nutricionais , Fórmulas Infantis , Aleitamento Materno , Prebióticos/análise , Oligossacarídeos/farmacologia
20.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240357

RESUMO

Breast cancer (BC) is among the most frequently diagnosed malignant cancers in women in the United States. Diet and nutrition supplementation are closely related to BC onset and progression, and inulin is commercially available as a health supplement to improve gut health. However, little is known with respect to inulin intake for BC prevention. We investigated the effect of an inulin-supplemented diet on the prevention of estrogen receptor-negative mammary carcinoma in a transgenic mouse model. Plasma short-chain fatty acids were measured, the gut microbial composition was analyzed, and the expression of proteins related to cell cycle and epigenetics-related genes was measured. Inulin supplementation greatly inhibited tumor growth and significantly delayed tumor latency. The mice that consumed inulin had a distinct microbiome and higher diversity of gut microbial composition compared to the control. The concentration of propionic acid in plasma was significantly higher in the inulin-supplemented group. The protein expression of epigenetic-modulating histone deacetylase 2 (Hdac2), Hdac8, and DNA methyltransferase 3b decreased. The protein expression of factors related to tumor cell proliferation and survival, such as Akt, phospho-PI3K, and NF-kB, also decreased with inulin administration. Furthermore, sodium propionate showed BC prevention effect in vivo through epigenetic regulations. These studies suggest that modulating microbial composition through inulin consumption may be a promising strategy for BC prevention.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Feminino , Animais , Camundongos , Inulina/farmacologia , Inulina/metabolismo , Receptores de Estrogênio/metabolismo , Epigênese Genética , Suplementos Nutricionais , Prebióticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...